
1

SOURCE
August 2025, Issue 2

Suggested Donation £3:00

SOURCE:
a quarterly
periodical that takes a
look into interesting
opensource projects and
applications. In this issue we'll
look at getting started with the Godot
game engine, consider Logseq and
Syncthing to make a second brain, explore
adding Termux, a terminal emulator app on an
android phone, simple approaches to contributing to
openstreetmap... and more!

2

Hello, I’m Jo, AKA Concretedog, and
first of all, thank you for taking

interest in SOURCE.

I’ve been writing about technology, maker/
hardware hacker/tinkerer culture for a
while now but I often have stories, ideas
or longer form tutorials that don’t fit
easily in any of my clients platforms.

So SOURCE is an attempt to fill this gap.
The idea so far is for quarterly issues on a
suggested donation or “pay what you feel”
model. No subscriptions. It’s going to
focus on opensource projects and
technologies, be it hardware, software or
possibly other areas of open culture, open
governance and more. We’ll see!

If you downloaded, read or shared
SOURCE issue one MANY thanks. The
issue covered Computational Fluid
Dynamics with FreeCAD and was a great
learning experience and has travelled well
and even garnered a tiny amount of
donations. Thank you very much.

This issue 2 is a fuller affair, and it’s nice
to look around at a few different areas.
I’ve really enjoyed tinkering with Termux,
breathing new life and functionality into
my old droid phone. Tackling starting
Godot has been an area I’ve needed to
nudge myself into for a long time and at a
personal level it’s cool that this project is
giving me the impetus to move these
explorations along. I hope you enjoy it
too.

Welcome to SOURCE

Pay what you feel via Paypal here Pay what you feel via KoFi

https://paypal.me/concretedog?country.x=GB&locale.x=en_GB
https://ko-fi.com/concretedog
https://drive.google.com/file/d/1_7A56BkFeZcQMQynmC0fXjHjAhZjm67I/view

3

Contents

Page 4, Logseq and
Syncthing: Building
a Second Brain.

Page 7. Making a
Dot Go with Godot.

Page 13.Termux:
Terminal Power in your
Handheld Droid.

Page 16. Street Complete:
Contributing to Open Street
Map.

Page 18. Inkscape: Using the
Corner Path Effect

4

Logseq and Syncthing: Building a Second Brain

The heady blend of my neurology, my physical
environment and my many project area’s, I’ve

become increasingly aware of needing supportive
systems to try and keep me generally on track.
Whilst I still fail at this in many ways, one little
setup and combination of two applications has really
made sense to me and been really impactful in my
workflow? (sometimes the “flow” is more like
“splutter” but “worksplutter” doesn’t read as well).

The two applications are both free and opensource
of course, and they are Logseq and Syncthing.
Logseq is a note taker and outliner application and
often gets discussed in sentences as a little “like
obsidian” etc. I’ve always been interested in note
taking (cue references to my continued obsession
with pens and index cards) but I really got interested
in finding an application for note taking that allowed
me to build, ahem, a “second brain”. This was
inspired by reading Tiago Forte’s book how to build
a second brain. I don’t do Tiago’s entire process, it’s
similar to the older “Getting Things Done” type
approaches of ubuquitous capture which is a little
too much for me. However I’ve realised that a
system that allowed me to collate and connect notes,
as well as tag and retrieve stuff easily was very much
needed. What wasn’t immediately apparent was
how Logseq would actually change how I viewed all
my information management and impact in other
areas, like enabling a more distraction free work
environment.

Logseq can be operated as a journal. I have it on all
my Linux machines as an app image and I can
quickly open it and be presented with a today’s date
heading and a bullet point underneath at which I can
start typing. On set up you set up a local folder
where all your Logseq stuff will be saved. The files
created by Logseq are pure markdown and it creates
a simple set of directories in your local folder where
it stores files. You can tag notes using a double set of
square brackets with a string inside so
[[important_quotes]] would create a tag for
example. However clicking that tag will take you to
a bespoke page for that tag where any linked
references will be created. This is really fluid in use
as if I know exactly where to tag an item I don’t
need to go to that particular page, I can just open
Logseq and at the next bullet point in today’s journal
I can simply insert that tag and write or copy the
data I want to add. Simple.

5

A good example of tagging information as a
second brain is, well for me one of my most

visited tags in my local directory is “commodity
codes”. So I sell a small amount of weird electronic
stuff on my Tindie store. This includes an
opensource robot platform, some screw switches for
rocketry, some adapted switches for drop release
systems, a nichrome burning circuit and more. I
invariably sell most of this stuff outside the UK and
as such each order requires one or more commodity
codes, or tarriff codes, or export codes, that describes
the tarrif sector the product sits in. hese are quite
often hard to initially identify and it takes quite a lot
of work to land on a code you feel confidant
represents the product. Furthermore, I need different
combinations of codes for each order and I also am
not overrrun with orders, so I don’t retain a memory
of the codes. So a simple page “commodity codes”
gets me to that info instantly. Interestingly though
on that page I also have tags like [[HS tarrif]]
[[tindie]] etc so that I don’t have to rely on my wet
brain producing the single tag, it can splurge out any
number of things I might call those codes or recall a
word in a related area.

There are a thousand other features in Logseq and I
don’t really tend to use many of them. One that I do
use, and again has really changed computing for me,
you can upload an asset into a Logseq note. To do
this you start typing "/upload" and in the context
menu that appears you select “upload an asset” then
a file manager launches and you can select any file to
add to the note, images and pdf’s are previewed in
the note directly. Interestingly what this does is it
creates a copy of the asset in an “assets” folder in
your local Logseq folder. For me this is perfect and
although I use a more traditional folder on my hard
drive for larger projects I actually now store huge
amounts of general files in this folder. You can of
course tag files and more and a single file may end up
tagged across multiple relevant subject areas or
pages.

Just for the sake of the story, let’s skip to what
Syncthing is and how it impacts into my setup. So

one of the things proprietary note taking applications
have is synchronising across systems. So for example,
google keep, which I did use a lot historically, is
synchronised across all devices signed into by the
same google account, so often I’d make a note or
paste a link on my phone and then review it later on
my laptop. That’s pretty crucial in terms of modern
note taking and second brain stuff. Logseq in it’s
current form doesn’t sync (Sync is on their roadmap
and may signal a change in directon for the Logseq
project). Up steps Syncthing. Syncthing is a free and
opensource continuous file synchronisation
application. It synchronises user specified files and

6

folders between user specified machines, using the
internet, but never placing your files and folders on
any external servers or clouds (aka other people
computers).

It does this in real time, and so as it never uses
external servers you need to have the syncing

machines online at the same time. I have Syncthing
installed on most of my machines (pretty easy to set
up on Debian and Arch machines) and I also have
the recommended Syncthing fork android application
set up on my phone (I also have the android version
of Logseq installed). With Syncthing set up I can
have my Logseq folder synchronising across my
phone and numerous machines. It works incredibly
well and the my phone is always on with the
Syncthing service running and as it’s my ubiquitous
device it’s often the glue that keeps my varied other
machines up to date.

Whilst I ensure this isn’t my only backup system, it
is a very handy way to ensure backup of key files and
folders, it means my Logseq second brain is always
ready and up to date, but also has provided another
interesting solution. I’ve become aware of how many
distractions I am capable of falling victim too, I’ve
realised, and this will be different for all of us, that a
good solution for me is to have some work machines,
that I never log into my distraction accounts, or even
allow to have my passwords stored for my
distraction accounts on. So the machine I write on, I
have allowed myself to access my business email
account, but I’m not logged in to my mastodon or
other socials, but the machine has my Logseq and
Syncthing set up on board. This means that I can
park distraction or manage known personal entry
points to distraction.

As an example, this morning I was working on an
article about using a Raspberry Pi Pico, flashed with
the Picomite firmware, a boot to basic computer, and

interacting with it using a Picocom, a serial interface
in the terminal emulator. I wanted to message my
friend with a screenshot quickly to show them I had
it up and running. However, I can’t log in to my
messaging applications on this work machine easily.
So, I’ve uploaded a quick screenshot to Logseq
which will be synced to my phone. This means later,
when I allow myself, I can go retrieve my very
distracting phone and the image will be ready to
send to my friend in my gallery application.

I’ve really only scratched the surface of this useful
combination of applications, I occasionally use
Logseq to annotate PDF’s and it’s pretty stellar for
this as you can highlight text, tag a connected note
to the highlight and then when you return to the tag
it will open the PDF on screen at the references
point. Theres heaps more I haven’t used… those are
distractions for another day!

Remember the old adage;
"There is no cloud, it's just
someone elses computer."

7

Making a Dot Go with Godot:
Getting started with the Godot Game Engine

The Godot engine is a great free and opensource
option for those looking to get started in game

development. Let’s dive in to a very fundamental
getting started tutorial to explore just the basics. In
this tutorial we are using debian 12 and the Godot
download page offers us an executable download.

Once downloaded, a double click launches a getting
started dialogue which recognises that you don’t
have any current Godot projects. Click the button to
create a new project and give your project a name,
note that the name you give create a new folder at
the specified location rather than a typical “project
file”. That’s because, neatly, Godot sets up a folder
that contains the entire Godot toolset making it
really easy to move projects around. Having created
a new project you’ll immediately land on a new
project page with a 3D preview window. We aren’t
going to dive into a 3D project so our first thing is to
left click on the 2D tab from the collection of 5 tabs
in the centre of the screen.

You should now see a 2D preview window. Godot,
when working in 2D, places the X axis as left to
right across the screen and the Y axis up and down
the screen. In the upper left hand side of the screen
you will see a set of tabs called “scene” and “import”
with “scene” being currently active. In the dialogue
there are some options listed under the title “Create
Root Node”. As we are going to create a very simple
2D scene click the “2D Scene” option to create a
“Node2D” item.

 Before we start to do anything more exciting let’s do
some basic housekeeping for this project. On the
lower left hand side of the screen you will see a

https://godotengine.org/

8

“FileSystem” tab inside which we will see a listing
for “res://”. Right click on this an in the context
menu you can click the first option to “Create New”
and from the expansion menu select “Folder”. Call
this folder “scenes”. Repeat this process to create a
second folder called “scripts”.

Once you have these two folders set up. Click away
from the FileSystem tab by left clicking on the large
preview window area. Then press “control and S” or
alternatively navigate the main menu’s by selecting
“Scene > Save Scene”. In the resulting window you
should be in the “res://” directory and see the two
folders you just created. Double click to enter the
“scenes” folder and then change the default name of
the file from “node_2d.tscn” to “main.tscn” and left
click the save button.

With the housekeeping a little out of the way let’s
now highlight our “Node2D” item and right click
and then select “+ Child Node”. You’ll see a “Create
New Node” dialogue appear with a long list of
options. At the top of this window you’ll see a
search bar, let’s use the search bar to search for a
node type called “CharacterBody2D”. Once
identified in the list left click to select the item and
click the “Create” button. This node will be our
“Dot” that we will be able to move around our
screen.

Let’s add an object for to our as yet empty
CharacterBody2D node. With the CharacterBody2D
item highlighted in the “Scene” tab once again right
click and select to add a Child Node. This time
search for a “ColorRect” object to insert, yes you
guessed it, a small coloured rectangle. Note that it’s
really easy to place child nodes in the wrong position
in the hierachy, in the image you can see that the
ColorRect child node has been accidentally added as
a sibling of the “CharacterBody2D” node rather than
a child. Make sure that the node hierarchy looks like
the second image below.

9

The next node we will add we do want to be a
sibling of the ColorRect node we added as a

child node of the CharacterBody2D. So highlight
CharacterBody2D and then add a child node. This
time search for “CollisionShape2D” and add this
item. Note that as we have added child nodes they
sometimes appear with a small yellow triangular
warning icon. Hovering the pointer over these often
gives tips as to what is needed to be added to the
node to allow it to function. The CollisionShape2D
node we just added has such a warning. Hovering
over it with the pointer it suggests that a Shape
Resource needs to be added. To do this we need to
use the tabbed area on the right hand side of the
screen. You should find a selection of tabs titled
“Inspector”, “Node” and “History” with the
Inspector tab uppermost and active. With the
CollisionShape2D child node highlighted in the
Scene tab on the left hand side of the screen you
should see a “CollissionShape2D” tab and dialogue
open in the “Inspector” tab. There is a “shape”
parameter which is currently “empty” and you click
to open a dropdown menu. From the dropdown left
click to select and create a “NewRectangleShape2D”.

You should see a collection of 9 red dots appear close
to your original ColorRect object. The dots are the
corner and side handles and centre point of an
adjustable rectangle shape. Grab these and move
them so that the light blue rectangle directly covers
the ColorRect rectangle placed previously.

Moving on we need to create a script connected to
our CharacterBody2D node. To do this highlight the
CharacterBody2D node item and then left click on
the “Attach a new or existing script to the selected
node” button found to the right of the filter input
box on the Scene tab at the upper left of the screen.
In the resulting “Open Script/ Choose Location”
dialogue navigate into the “scripts” folder we
prepared earlier and name the script “move.gd” then
click “open”. You’ll now jump to a second window
titled “Attach Node Script”. We are going to leave
everything as it is on this window and click
“Create” however just note for future reference that
in this window you can select a scripting language,
and set which node in your project the script effects
or which node “inherits” the script.

You should now see that the main preview area of
the screen is the script editor environment and you
have a new script loaded called move.gd and it
contains the single line “extends CharacterBody2D”.
To show that scripts can be edited repeatedly we’ll
start to write a function and then go do another task
and then return to the script.

10

Notice that the script editor has line numbers but
Godot/GD script is not worries about empty

lines. So use the return key to move a couple of lines
below line one and let’s begin to add a function.

Type “func” to declare a function and then start
typing “process”. You’ll see Godot autosuggest
completions for the line. Whilst this might seem a
little overwhelming at first it does make it incredibly
quick to work with as you learn more. You’ll also see
options that maybe intrigue you and you end up
reading up about different functionality so it’s a
useful learning feature. We are going to select the
first suggestion which reads “_process(delta: float)
-> void:” . Note in later images that we have added
comments to our simple script explaining each line.
An inline comment is added by using a # symbol.
This first line creates a function that will be
processed in every frame of gameplay.

We can use the main set of tabs in the top centre of
the screen to navigate through our project. When
we created our move.gd script it automatically
jumped to the “Script” tab whereas previously most
of the time we had been working in the “2D” tab.

C
lick the “2D” tab once more and let’s set a camera
node up that will define the view area of our little
project. This camera node needs to be attached to
our uppermost main “Node 2D” parent node in out
project. Left click to highlight “Node 2D” and then
click the “+” icon to add a node. Input camera into
the search bar and then select a “Camera2D” node
item. This should now appear in the growing tree of
nodes but directly connected with a line to the
“Node 2D” object.

You should now also see a thin pink line appear in
the 2D preview that forms part of a rectangle around
the centred rectangle we made earlier. Don’t worry
if you can only see part of it. At the top of the 2D
preview window we can see some tools, the
currently selected one being a standard pointer icon.
Further along to the right of this icon we can see a
hand shaped icon. If we select this tool we can then
pull the canvas around in the 2D preview and we
can also use either the centre mouse wheel or button
or the zoom tools to move in and out. Move the
canvas so you can see the entire pink box that forms
the camera view.

Next move back to the script tab and let’s finish our
small script. We are going to create 4 “if” statements
inside our function that runs every frame and each if
statement will detect if an arrow key is pressed and
if it is move the rectangle in the corresponding
direction. With the cursor at the end of the “func
_process(delta: float) -> void:” press the return key
and note that cursor will be indented to signify the
following lines are inside the function.

11

Type the line;

“If Input.is_action_pressed("ui_right"):”

Noting that almost all that line of text is available to
select from the auto suggested options that pop up as
you type. This line of code basically checks if a
button, ui_right, which is the right arrow key has
been pressed. At the end of the line press the return
key and the next line should begin indented as the
statement will be within the If statement from the
previous line.

 On this line type;

“position.x += 10”

This means that If the right arrow key is pressed
then the position of the object inheriting this script
(our rectangle) will move 10 pixels in the positive X
axis direction. Next add virtually the same if
statement but replacing the “ui_right” for “ui_left”
in the If statement and then in the position line
change “+=10” to “-=10” this makes the rectangle
move in the negative direction of the X axis.

Continue to add 2 more If statement for the Y axis.
You should end up with a script that looks like the
text block below.

extends CharacterBody2D

func _process(delta: float) -> void: #function process happens every frame
if Input.is_action_pressed("ui_right"): #if right arrow key pressed

position.x += 10 #Change position X by 10 pixels
if Input.is_action_pressed("ui_left"): #if right arrow key pressed

position.x -= 10 #Change position X by 10 pixels
if Input.is_action_pressed("ui_up"): #if right arrow key pressed

position.y -= 10 #Change position X by 10 pixels
if Input.is_action_pressed("ui_down"): #if right arrow key pressed

position.y += 10 #Change position X by 10 pixels

12

Finally you can in the script window click “file >
save” to save the move.gd script.

We should now be all set to run our small project. In
the upper right hand side of the screen you can see a
triangle shaped “play” button icon. Click this and
you’ll get a small warning dialogue saying that “no
main scene has ever been defined”, click “select
current” and your scene/game should launch in a
new window. You’ll notice it is the same size as the
pink camera rectangle with your small rectangle in
the centre. Toggling the arrow keys on your
keyboard and well, you should be able to make the
dot go with Godot!

Whilst this isn’t going to win you a game design
award it’s certainly a good start and a peek under
the hood of the Godot environment. Going further
there are heaps of online tutorials and content on
video platforms as well as written tutorials. If you
are particularly interested in learning GDScript then
a fun interactive learning environment is available
online here.

https://gdquest.github.io/learn-gdscript/

13

Termux:
Terminal Power in your

Handheld Droid

I’ve played a lot with Linux phones, ran an
Ubuntu touch device (a very old Pixel) as an

everyday machine for a while, and tinkered with a
huge variety of different distro’s on my original
Pinephone community edition. There’s a few apps
that keep me on my Droid device though. My
business banking is totally app based and there’s a
few other bits and bobs that lure me back.

We also see in 2025 that, from version 15 of Android
on Pixel phones, they'll ship with a native linux
terminal application. If you aren’t at the cutting edge
of Android, and don’t particularly feel the need for a
full blown Linux distro phone then there is Termux.

Termux, is a terminal emulator for Android and it’s
frankly excellent. Over the years Termux availability
on the Google Play Store has changed numerous
times but it has continuously been available on
platforms such as F-Droid. However, perhaps it's
more simple to just seek out the most up to date apk
file available on the projects repository.

Excellently you can run Termux on pretty much any
Android device without the device being rooted,
although there are some interesting applications for
Termux if you do have a rooted device.

14

Once downloaded and installed you can launch
into a familiar looking terminal. It’s pretty easy

to get going with but if you’ve used things like “apt”
or “pacman” to install packages on other Linux
systems you’ll need to read the terminal header text
that quickly describes the “pkg” command. You can
use “pkg install <packagenamehere>” to install a
package but perhaps more usefully you can do a “pkg
search <query>” to search the 1000’s of packages
available for Termux.

A good test example is to run “pkg install neofetch”
to install neofetch and then, once completed, you can
type “neofetch” at the prompt to witness your
system specification in that lovely neofetch style.

Beyond Neofetch there’s lots to explore, but before
you jump in too deeply it’s worth running a storage
setup command to allow Termux to create and edit
files on your device. You can do this by running the
command “termux-storage setup”. This will now
create a “storage” area on your device which you can
locate using any file manager. Within the “storage”
area you can then use familiar commands like “cd”
and “ls” to navigate and list files and directories.
After setting up the storage a neat idea is to run the
“pkg list” command but put the output into a text
file by using “pkg list-all > package_list.txt” you can

run the command to list directly in the terminal but
as a default Termux can only scroll back 2000 lines
and this won’t be enough.

With your storage sorted you can start to think
about what you might use Termux for. I’m no dev,
and not the greatest coder however it’s super useful
for me to be able to install Python and pip to tinker
with python scripts whenever the mode takes me.
You’ll discover more familiar terminal commands
that just work as you go along, when I installed
Python I curiously after a successful install ran
“python --version” and it did indeed correctly display
the Python version (3.12) successfully.

Alongside Python it’s useful to have some kind of
text editor. I often use the ubiquitous “nano” to
create and modify text files and scripts and find it a
nice straightforward and distraction free way to
sometimes create bodies of text. Nano runs happily
in Termux (its pre-installed) and you can install
other popular editors, vim, neovim or emacs for
example.

Moving to areas I haven’t explored, there are also
options to use things like Proot and Chroot and to
install x11 for a more fully featured GUI based Linux
environment, looking around the scene people are
running all manner of distros this way with varied
results. For me I think that’s an interesting exercise
but probably not something I have a huge use for.
Another area where Termux seems a popular
solution is using it to SSH into other systems, again
it’s perfect to have a pocket device with this
capability.

15

As a final thought, at first I questioned how good Termux would be on a small screen and whether it was
really useful. I have to say it is a pretty good experience, it’s fun to have a terminal that autorotates and

it automatically adds some useful keys (page up, page down, tab, control, escape, home and more) on top of
your regular screen keyboard. I tend to use the “hacker keyboard” application on my android devices with 4
lines so It’s fair to say that it can get pretty cramped for screen real estate quickly, but it’s certainly workable.
For more extended Termux tinkering I tend to pair my cheap portable folding keyboard, which disables the on
screen keyboard, then it’s then a joyous, lightweight, “Tech Tuareg” rig that still fits in your pocket.

Pay what you feel via Paypal here Pay what you feel via KoFi

https://paypal.me/concretedog?country.x=GB&locale.x=en_GB
https://ko-fi.com/concretedog

16

Street Complete: Contributing to
Open Street Map

It can sometimes be tricky to work out how to
contribute to an opensource project. Perhaps you

aren’t a developer, or perhaps time is a constraint
that limits what you can do. As such it’s always cool
to share ways that we can incorporate contributions
into our lives without much impact.

 If you don’t know Open Street Map (OSM) is an
opensource mapping system that started in the UK
and has rolled out to the world. OSM started in
2004 and it’s become a hugely used project that
attracts heaps of users and developers. Founded by
Steve Coast the first map entry was surveyed by
Steve riding around Regents park in London on a
GPS equipped bicycle and since then many online
and offline map editor environments have been
created to add data to the project. However with
many of us having GPS enabled phones with healthy
data packages, mobile phones now make great sense
in terms of quick, impactful, surveying.

One way to achieve this is the “Street Complete”
application on android. It’s available via the Google
Play store but, if you’re avoiding there then it’s also
available via F-Droid or you can directly find .apk
files on the Github repository release page.

https://github.com/streetcomplete/StreetComplete

17

Once you have the application installed, you’ll
need to give it a few permissions, turn on

location services and you are ready to go. It’s
incredibly intuitive and needs little real explanation.
You are presented with a map and your location and
the map is populated with a lot of icons dotted
around. Clicking on an icon will reveal a question
about something at that location. These questions
are varied but with lots of common simple ones like,
“what is the surface of this road/path?”, “What is
this telegraph pole made from?” or things like “What
times is mail collected from this post box?”. For
many questions there are multiple choice answers
and you simply click an icon. For others there are
text input boxes etc.

Whilst the gold standard is to fill in answers at the
locations of the questions, you can also fill in
answers not at the location, ticking a box to confirm
that you realise you aren’t at the location. This
means you can actually get started usually from your/
desk or couch as it’s pretty likely you’ll know some
answers for the questions local to your
accommodation or place of work.

It’s nicely gamified with reward medals and ranking
systems and it does a good job of motivating you to
contribute more. As you tick off question nodes you
might think that you’ll run out in the areas you can
survey easily (for example my standard dog walking
routes). Rest assured, more questions appear, whilst
this might seem never ending, it actually means that
the OSM for your area becomes incredibly detailed
and well surveyed.

18

Inkscape: Using the Corner Path Effect

The Corner path effect in Inkscape can be added
to reasonably complex paths to create radius

corners. It’s a relatively straightforward path effect
to use. As an example lets create a shape with a pair
of rectangles and then apply the Corner path effect.

To begin click the Rectangle Tool icon and then left
click and hold on the canvas to start drawing a
rectangle, drag the tool across the canvas to create a
rectangle. Create a second rectangle and roughly
arrange them as seen in the image.

Quicktip: If we just want to add rounded corners to
a single rectangle or square we can select the item
with the Node Tool and then either drag a circular
node or type a radius into the Rx or Ry dialogue
boxes.

Next press “Control A” to select both rectangles and
then Path – Union to make a single object from the
two rectangles as shown in the image.

To add the Corner path effect first select the union
shape we just created and then click Path – Path
Effects to open the Path Effects tab on the right
hand side of the screen. You should see in the tab
that the object, named “rect1” is listed below a
search input box which has a dropdown menu. Left
click on the arrow at the right side of the input box
and you should see the available path effects as
shown in the image on the next page.

19

Left click to select the Corners path effect and you
should see the dialogue with the parameters for the
corners path effect in the right hand tab. As a simple
example of applying a corner effect let’s set the Units
selection to “mm” and then type “5” into the Radius
input box.

You should now see that the corner path effect is
added to both the internal and external corners of
our shape, you can see this in the header image at
the top of this post. To remove the corner path
effect at any time you can click the dustbin logo in
the corners path effects dialogue.

20

Pay what you feel via Paypal here

Thanks for Reading!

Thanks so much for reading SOURCE. Whilst it's a lot of work putting these
together, I'm enjoying learning new things and incrementally increasing my

knowledge of Scribus which I'm using to do the page layout. I have a few thoughts for
the next issue, I'd like it to have a general lean towards tools for open hardware and
open hardware projects. If you do want to support SOURCE then please do consider
paying what you feel it's worth. If I can garner a reasonable amount of donations then I
can justify keeping going, (although I am commited to doing 4 issues whatever they
bring!). If you aren't in a position to pay what you feel, then a great thing you can do is
to share SOURCE. Either directly by any means, post it, host it, compress it and email
it, or link to it. Finally... if you enjoyed something in SOURCE do feel free to comment
or mention it to me directly. I'm @concretedog on mastodon.

Take good care and see you in issue 3!
Jo AKA Concretedog.

Pay what you feel via KoFi

https://paypal.me/concretedog?country.x=GB&locale.x=en_GB
https://ko-fi.com/concretedog

